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We consider the problem of metastability for a stochastic dynamics with a par-
allel updating rule with single spin rates equal to those of the heat bath for the
Ising nearest neighbors interaction. We study the exit from the metastable
phase, we describe the typical exit path and evaluate the exit time. We prove
that the phenomenology of metastability is different from the one observed in
the case of the serial implementation of the heat bath dynamics. In particular we
prove that an intermediate chessboard phase appears during the excursion from
the minus metastable phase toward the plus stable phase.

KEY WORDS: Stochastic dynamics; probabilistic cellular automata; metasta-
bility; low temperature dynamics.

1. INTRODUCTION

Metastable states arise when a physical system is close to a first order phase
transition. If the system is prepared in the metastable phase, it takes an
extremely long time to reach equilibrium. In physical experiments it is seen
that if the system is not suitably perturbed it remains forever in the meta-
stable phase. (1)

A rigorous description of metastability cannot be formulated in terms
of the standard equilibrium statistical mechanics: dynamical models must
be considered. (2) The case of the stochastic serial dynamics has been dis-
cussed, for instance, in refs. 3–5: at each step of time one of the spins on
the lattice is updated with rates satisfying the detailed balance condition. In
this set-up it has been seen that starting from the wrong metastable phase,



the time needed by the system to exit the metastable state, namely the exit
time, is exponentially long in the inverse of the temperature. Moreover, the
exit time is exactly the time needed to see a sufficiently large droplet,
namely the protocritical droplet, of the stable phase in the metastable
background. Hence, the equilibrium is achieved via the nucleation of such a
protocritical seed.

It is rather natural to ask oneself in which sense these results depend
on the dynamics. In this paper we consider a dynamics in which simulta-
neous spin flips (6, 7) are allowed: the single spin flipping rates are those cor-
responding to the two dimensional nearest neighbors Ising interaction.
More precisely we study the metastable behavior of a Probabilistic Cellular
Automaton (8, 9) which is reversible with respect to a Gibbs measure derived
by an Hamiltonian with four body interaction. We show that the exit path
from the metastable phase to the equilibrium changes dramatically, with
respect to the serial implementation of the heat bath dynamics, in particu-
lar the system visits an intermediate metastable phase before reaching the
equilibrium. This is not surprising, indeed, as it will be pointed out
throughout the paper, there exist many deep differences between the
evolution of the system under a serial and a parallel dynamics.

We focus, now, on what we consider the most relevant novelty
appearing in the study of metastability for parallel dynamics: in Glauber
dynamics the system can jump between configurations differing at most for
one spin, such pairs of configurations are called neighboring configura-
tions. A connected domain is a subset of the configuration space such that
for any pair of states it is possible to find a sequence of pairwise neighbor-
ing configurations of the domain joining the two states; the system, during
its evolution, can visit the whole connected domain without exiting from
the domain itself. In order to exit a connected domain, the system must
necessarily cross its external boundary, that is the set of configurations not
belonging to the domain, but having a nearest neighbor inside it. This sort
of ‘‘continuity’’ property is the key property in estimating the exit time,
that is in establishing the minmax between the metastable and the stable
states, namely the minimal energy barrier bypassed by any path joining the
metastable to the stable state.

Continuity is absent in the case of PCA’s: any configuration is con-
nected to any other, a path joining the metastable to the stable state is an
arbitrary sequence of configurations starting with minus one and ending
with plus one. The lack of continuity forces us to develop techniques to
estimate the energy cost of any direct jump from a subcritical to a super-
critical configuration.

The paper is organized as follows: in Section 2 we define the model. In
Section 3 we state our results: we first characterize the stable configurations
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(fixed points for the zero temperature dynamics, that is the typical droplets
of the right phase plunged into the sea of the wrong phase); then we study
the tendency to grow or to shrink of such droplets; finally, we construct the
subset of the configuration space visited by the system in the metastable
phase (description of the fluctuation around the metastable state) and, via
a detailed description of the escape path, we estimate the exit time. In
Sections 4 and 5 we, finally, prove the theorems and the propositions.

2. DEFINITION OF THE MODEL

In this section we define our model, namely a Probabilistic Cellular
Automaton reversible with respect to a four body hamiltonian.

2.1. Preliminary Definitions

Let L be a two-dimensional torus containing L2 lattice sites, i.e., L … Z2

is a square containing L2 points and having periodic boundary conditions.
Let d: (x, y) ¥ L×L Q d(x, y) ¥ [0, +.) be the euclidean distance on the
lattice L. For any X, Y … L we define d(X, Y) :=infx ¥ X, y ¥ Y d(x, y).

We say that x, y ¥ L are nearest neighbors iff d(x, y)=1. We say that
the set X … L is a cluster iff for any x, y ¥ X there exist x1,..., xk ¥ X such
that x1=x, xk=y and for any i=1,..., k − 1 the two sites xi and xi+1 are
nearest neighbors.

Given two integer numbers m \ a \ 1 and x ¥ L we denote by Rx, a, m a
rectangle on the dual lattice L+(1/2, 1/2) with side lengths a and m and
such that x is the first site of L inside the rectangle in lexicographic order.
We denote by R̄a, m :={x ¥ L : x is inside Ra, m} the interior of Ra, m. We will
drop x from the notation when it will be not necessary to specify the loca-
tion of the rectangle on the lattice. We say that two rectangles Rx, a, m and
RxŒ, aŒ, mŒ are interacting (resp. non-interacting) iff d(R̄x, a, m, R̄xŒ, aŒ, mŒ) [ 2 (resp.
\ `5).

We associate a spin variable s(x)= ± 1 to each site x ¥ L; the space
{1, −1}L of configurations is denoted by S. If s ¥ S and X … L we denote
by sX a configuration such that sX(x)=s(x) for any x ¥ X and sX(x) is
arbitrary for any x ¥ L0X.

2.2. Definition of the Dynamics

Let s(x)= ± 1, for any x ¥ L, be a spin variable and let

H (I), h
L (s) — H (I)(s) := − C

Ox, yP
s(x) s(y) − h C

x ¥ L

s(x) (2.1)
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be the Ising nearest neighbors interaction, with the first sum performed
over all the nearest neighbor pairs, s ¥ S and h ¥ R.

Let us introduce the discrete time variable n=0, 1,... and denote by
sn the system configuration at time n. All the spins are updated simulta-
neously and independently at every unit time; the conditional probability
that the spin at site x takes value a ¥ { − 1, +1} at time n, given the con-
figuration at time n − 1, is

px(a | sn−1) :=
exp{−bH(I)(a, (sn−1)L0{x})}

exp{−bH(I)(a, (sn − 1)L0{x})}+exp{−bH(I)(−a, (sn−1)L0{x})}

=
1

1+exp{−2ba(Ssn−1
(x)+h)}

=
1
2

[1+a tanh b(Ssn−1
(x)+h)]

(2.2)

where ± a, (sn − 1)L0{x} are the configurations equal to sn − 1 on L0{x} and
to ± a on {x},

Ss(x) := C
y ¥ L : d(x, y)=1

s(y)

for any s ¥ S and x ¥ L. The normalization condition px(a | sn − 1)+
px(−a | sn − 1)=1 is trivially satisfied. Thus the time evolution is defined as
a Markov chain on S with non-zero transition probabilities PL(g | s) given
by

PL(g | s) — PL(s, g) := D
x ¥ L

px(g(x) | s) -s, g ¥ S. (2.3)

It is straightforward (10) that the above Probabilistic Cellular Automaton is
reversible with respect to the Gibbs measure nL(s) :=exp{ − HL(s)}/ZL

with ZL :=;g ¥ S exp{ − HL(g)} and

Hb, h
L (s) — H(s) := − bh C

x ¥ L

s(x) − C
x ¥ L

log cosh[b(Ss(x)+h)]. (2.4)

In other words the detailed balance condition

PL(s, g) exp{ − HL(s)}=PL(g, s) exp{ − HL(g)} (2.5)

is satisfied for any s, g ¥ S. The interaction is short range and it is possible
to extract the potentials: for any s ¥ S we can write
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H(s) − const

= − J. C
x ¥ L

s(x) − JOOPP C
OOxyPP

s(x) s(y) − JOOOPPP C
OOOxyPPP

s(x) s(y)

− Ĵ C
5xyz

s(x) s(y) s(z) − Jq C
qxywz

s(x) s(y) s(w) s(z) (2.6)

where the five sums are respectively performed over all the sites in L, the
pairs of next to the nearest neighbors, the pairs of sites at distance 2, the
three site clusters composed of two consecutive not parallel pairs of next to
the nearest neighbor sites and, finally, over the four site diamond shaped
clusters. The even coupling constants are

JOOPP=2JOOOPPP=
1
8

log
cosh b(4+h) cosh b(4 − h)

cosh2(bh)
’

b Q .

b −
1
4

bh

Jq=
1
16

log
cosh b(4 − h) cosh6(bh) cosh b(4+h)

cosh4b(2+h) cosh4b(2 − h)
’

b Q . −
1
2

b

+
3
8

bh (2.7)

while the odd ones are

J.=bh+
1
4

log
cosh2b(2+h) cosh b(4+h)
cosh2b(2 − h) cosh b(4 − h)

’
b Q . 5

2
bh

Ĵ =
1
16

log
cosh2b(2 − h) cosh b(4+h)
cosh2b(2+h) cosh b(4 − h)

’
b Q . −

1
8

bh

(2.8)

2.3. The Energy and the Zero Temperature Phase Diagram

The definition of ground states is not completely trivial in our model,
indeed the hamiltonian HL depends on b. The ground states are those con-
figurations on which the Gibbs measure nL is concentrated when the limit
b Q . is considered, so they can be defined as the minima of the energy

Eh
L(s) — E(s) := lim

b Q .

HL(s)
b

=−h C
x ¥ L

s(x) − C
x ¥ L

|Ss(x)+h| (2.9)

uniformly in s ¥ S. Notice that it is possible to write HL(s)=bEL(s)+
o(exp{ − bc}) for some positive constant c depending on s.
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We consider, now, the case h=0: EL(s)=−;x ¥ L |Ss(x)|. It is rather
clear that there exist four coexisting minima +1

¯
, −1

¯
, Ce, Co ¥ S:

+1
¯
(x)=+1, − 1

¯
(x)=−1, Ce(x)=(−1)x1+x2 and Co(x)=(−1)x1+x2+1

(2.10)

for all x=(x1, x2) ¥ L. Notice that Ce and Co are the chessboard configu-
rations with plus spins respectively on the even and odd sublattices. We
define C :={Co, Ce}.

Now, we wonder what happens when h ] 0: a full description of the
zero-temperature phase diagram requires the introduction of a staggered
magnetic field. We consider the new zero-temperature energy

Eho, he
L (s) := − C

x ¥ L

hxs(x) − C
x ¥ L

|Ss(x)+hx |, (2.11)

where ho, he ¥ R and hx=ho (resp. hx=he) if x belongs to the odd (resp. to
the even) sublattice. A simple calculation gives the energy of the four zero-
field ground states:

Eho, he
L (+1

¯
)=−

|L|
2

[ho+he+|4+ho |+|4+he |] and

Eho, he
L (−1

¯
)=E−ho, −he

L (+1
¯
)

Eho, he
L (Co)=−

|L|
2

[ho − he+|4 − ho |+|4+he |] and

Eho, he
L (Ce)=E−ho, −he

L (Co).

(2.12)

Fig 1. The zero temperature phase diagram in the plane ho–he. The four states +1
¯
, − 1

¯
, Co

and Ce coexist on the solid line whose ending points are (−4, 4) and (4, −4). Each dotted line
is the boundary between two regions with different ground states coexisting on the line itself.
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By comparing the four expressions (2.12) one obtains the zero-temperature
phase diagram in Fig. 1. We note that on the line ho=he — h, depending on
the sign of the magnetic field the ground state is either +1

¯
or − 1

¯
; but at

h=0 there are four different coexisting ground states.

2.4. Heuristic Description of the Low Temperature Phase Diagram

In this section we give a heuristic argument showing that at finite, but
very low, temperature the structure of the phase diagram is not changed.
More precisely the argument suggests that at h=0 the four states +1

¯
, − 1

¯
,

Co and Ce still coexist. (11, 12)

At finite temperature ground states are perturbed because small
droplets of different phases show up. The idea is to calculate the energetic
cost of a perturbation of one of the four coexisting states via the formation
of a square droplet of a different phase. If it results that one of the four
ground states is more easily perturbed, then we will conclude that this is the
equilibrium phase at finite temperature.

A simple calculation shows that the energy cost of a square droplet of
side length n of one of the two homogeneous ground states plunged in one
of the two chessboards (or vice versa) is equal to 8n. On the other hand if
an homogeneous phase is perturbed as above by the other homogeneous
phases, or one of the two chessboards is perturbed by the other one, then
the energy cost is 16n.

Hence, from the energetical point of view the most convenient excita-
tions are those in which a homogeneous phase is perturbed by a chessboard
or vice versa. Moreover, for each state − 1

¯
, +1

¯
, Ce, Co there exist two pos-

sible energetically convenient excitations: there is no entropic reason to
prefer one of the four ground states to the others when a finite low tem-
perature is considered. This remark strongly suggests that at small finite
temperature the four ground states still coexist.

3. RESULTS AND HEURISTICS

We pose, now, the question of metastability: let h be positive and
small; we prepare the system in the starting configuration s0=−1

¯
and we

try to estimate the first time at which the system reaches +1
¯
.

The two chessboard phases coexist at h=0 with the minus and the
plus phase: it is natural to wonder if these phases play a role during the
escape from the minus metastable phase toward the plus stable phase when
the external magnetic field is positive and small.

The main feature of PCA models is that the system can jump from any
configuration to any other, in contrast with what happens in serial Glauber
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dynamics, where transitions are allowed only between configurations dif-
fering at most for one spin. We remark that in this model the single spin
flip is not a local event, in the sense that its probability depends on all the
spin of the lattice. Indeed, given X … L we denote by sX the configuration
obtained by flipping in s all the spins at sites x ¥ X; if X={x} for some
x ¥ L, then by abuse of notation we will denote sX=s{x}=sx. Now, by
(2.3) we have that

PL(s, sX)= D
x ¥ X

px(sx(x) | s) D
y ¥ L0X

py(s(y) | s)

= D
x ¥ X

px( − s(x) | s) D
y ¥ L0X

py(s(y) | s), (3.1)

that is the probability to flip the spins inside X depends also on the prob-
ability that spins outside X are not flipped. Notice that this is true even if
|X|=1, namely if only one spin is flipped.

3.1. Stable Configurations

First of all we characterize the stable configurations of the system,
namely those configurations s ¥ S such that PL(s, s) Q 1 in the limit
b Q .. Equivalently, s ¥ S is a stable configuration if and only if
PL(s, g) Q 0 in the limit b Q . for all g ¥ S0{s}.

We discuss, now, the possible single spin events. In Table I we con-
sider a site x and we draw all the possible configurations in a five spin cross
centered at x. The probability px(+1 | s) to see +1 at x is evaluated (we
recall px(−1 | s)=1 − px(+1 | s)). From Table I it is clear that in the limit
b Q . the probability associated to a single spin event is either one or zero,
in the sequel we will respectively say high and low probability events. By
(3.1) it follows that the same limiting behavior is valid in general for any
transition PL(s, sX) with s ¥ S and X … L; in this sense PCA’s are a gen-
eralization of deterministic Cellular Automata. We remark that for any
s ¥ S there exists a unique configuration g ¥ S such that the transition
s Q g happens with high probability, that is PL(s, g) Łb Q . 1. We note,
moreover, that g=Ts, where T: s ¥ S0 Ts ¥ S is the map such that for
each x ¥ L

Ts(x) :=˛sx(x) if px(sx(x) | s) Łb Q . 1

s(x) if px(sx(x) | s) Łb Q . 0
(3.2)

that is at each site we do the right thing in the sense of following the drift.
We can say that s ¥ S is a stable configuration iff s=Ts.
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Table I. Probabilities for Single Spin Events: Probability to See +1 at Site x at

Time t, with the Neighboring Configuration at Time t−1 Drawn in the Picture

−
− x −

−

1

1+e2b(4 − h) 4 e−2b(4 − h)
−

− x +
−

1

1+e2b(2 − h) 4 e−2b(2 − h)

−
− x +

+

1

1+e − 2bh 4 1 − e−2bh
−

+ x +
+

1

1+e − 2b(2+h) 4 1 − e−2b(2+h)

+
+ x +

+

1

1+e − 2b(4+h) 4 1 − e−2b(4+h)

In order to characterize the stable states of the model we need few
more definitions: let C ¥ C={Co, Ce}, we denote by SC … S the set of
configurations with a well defined sea of chessboard C. Similarly we define
S−1

¯
, S+1

¯
… S and we set SC :=SCo 2 SCe. More precisely, for each a ¥

{ − 1
¯
, +1

¯
}, for each s ¥ Sa there exists a percolating cluster X … L such that

sX=aX and sX=(Tns)X for all n \ 1; for each a ¥ {Ce, Co}, for each
s ¥ Sa there exists a percolating cluster X … L such that sX=aX and
sX=(T2ns)X for all n \ 1.

Proposition 3.1. A configuration s ¥ S−1
¯

is stable for the PCA (2.3)
iff s(x)=+1 for all the sites x inside a collection of pairwise non-inter-
acting rectangles of minimal side length a \ 2 and s(x)=−1 elsewhere.
A configuration s ¥ S+1

¯
is stable iff s=+1

¯
. There is no stable configura-

tion s ¥ SC.

In other words we can say that the only not trivial stable states are
configurations with well separated rectangular droplets of pluses inside the
sea of minuses. Proposition 3.1 follows from ref. 4 and Lemma 3.2.

Lemma 3.2. A configuration s ¥ S is stable for the PCA (2.3) iff

px(sx(x) | s) Łb Q . 0 -x ¥ L

Proof of Lemma 3.2. Suppose px(sx(x) | s) Łb Q . 0 for all x ¥ L:
let g ¥ S0{s}, there exists X … L and X ] ” such that g=sX; thus, by
equation (3.1) one has

PL(s, g)=PL(s, sX)= D
x ¥ X

px(sx(x) | s) D
y ¥ L0X

py(s(y) | s) Łb Q . 0
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Suppose s is a stable configuration: P(s, s) Q 1 in the limit b Q ., (2.3)
and the normalization condition px(s(x) | s)+px(sx(x) | s)=1 imply the
statement. L

3.2. Stable Pairs and Traps

The configurations in which our system can be trapped are not
exhausted by the stable configurations. Indeed, let s ¥ S and g=Ts ] s

the unique state reached with high probability starting from s. If it were
Tg=s, then the system would jump back and forth from s to g with
probability going to one in the zero temperature limit; the system would be
trapped into a two state loop. Given s, g ¥ S and s ] g, we say that they
form a ‘‘stable pair’’ iff g=Ts and Tg=s. The two chessboard configura-
tions Co and Ce are a simple example of a stable pair.

We discuss two important properties of the stable pairs. From the
detailed balance condition (2.5) it follows that if s, g ¥ S form a stable
pair, then they have the same energy, namely EL(s)=EL(g). Indeed, from
(2.5) and (2.9) we have EL(s) − EL(g)=limb Q .[HL(s) − HL(g)]/b=
limb Q .(1/b) log[PL(s, g)/PL(g, s)]. Now, the fact that s and g form a
stable pair implies limb Q . PL(s, g)=limb Q . PL(g, s)=1; hence EL(s)=
EL(g). By using results in Table I one can show that HL(s) and HL(g)
differ for a quantity exponentially small in b.

The remark above and the detailed balance condition suggests that
the system cannot be trapped in loops longer than two. Indeed, consider
a sequence s1,..., sn ¥ S such that si+1=Tsi for all i=1,..., n − 1, and
suppose, by absurdity, that s1=Tsn. The property above implies that
either EL(s1) − EL(sn)=c > 0 or EL(s1) − EL(sn)=0. In the first case from
the detailed balance we get |log[PL(s1, sn)/PL(sn, s1)] − cb| Q 0 in the
limit b Q .; hence using the hypothesis s1=Tsn we easily get an absurd.
In the second case the detailed balance implies |log[PL(s1, sn)/PL(sn, s1)]|
Q 0, that, together with s1=Tsn, gives PL(s1, sn) Q 1, which is absurd
because by hypothesis we have s2=Ts1.

We say that s ¥ S is a trap if either s is a stable configuration or the
pair (s, Ts) is a stable pair. We also let M … S the collection of all the
traps. Now, we give a full description of the stable pairs in S+1

¯
2 SC 2 S−1

¯(see Fig. 2): the most general stable pair living in a sea of minus is made of
rectangular flip-flopping droplets of chessboard plunged in the sea of
minuses and well separated stable droplets of pluses living inside the sea of
minuses or inside a chessboard droplet.

Proposition 3.3. (i) For any s ¥ S+1
¯
0{+1

¯
} the pair (s, Ts) is not a

stable pair. (ii) Given C ¥ C and s ¥ SC the pair (s, Ts) is a stable pair iff
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Fig. 2. On the left (resp. right) the most general s ¥ S−1
¯

(resp. SC) such that (s, Ts) is a
stable pair.

there exist k \ 0 pairwise non-interacting rectangles Ra1, m1
, Ra2, m2

, ..., Rak, mk
,

such that 2 [ ai [ mi [ L − 2 for any i=1,..., k, sR=+1
¯R

(s coincides with
+1

¯
inside the rectangles) and sL0R=CL0R (s coincides with the chessboard

C outside the rectangles), where R :=1k
i=1 R̄ai , mi

. (iii) Given s ¥ S−1
¯

the
pair (s, Ts) is a stable pair iff there exist k \ 1 rectangles Ra1, m1

, Ra2, m2
,...,

Rak, mk
, with 2 [ ai [ mi [ L − 2 for any i=1,..., k, and there exists an

integer s ¥ {1,..., k} such that the following conditions are fulfilled:

1. R̄ai, mi
5 R̄aj, mj

=” and ai \ 2 for any i, j ¥ {1,..., k};

2. for any j ¥ {1,..., s} the family {Raj, mj
, Ras+1, ms+1

,..., Rak, mk
} is a

family of pairwise non-interacting rectangles;

3. sL0R=−1
¯L0R where R :=1k

i=1 R̄ai, mi
(s coincides with − 1

¯outside the rectangles);

4. sR̄aj, mj
=+1

¯ R̄aj, mj
for any j ¥ {s+1,..., k} (s is plus inside Ras+1, ms+1

,
..., Rak, mk

);

5. for any j ¥ {1,..., s} there exist kŒ — kŒ(j) \ 0 rectangles R −

a
−

1, m −

1
=

R −

a
−

1, m −

1
(j),..., R −

a
−

kŒ, m −

kŒ
=R −

a
−

kŒ, m −

kŒ
(j) such that the following conditions are ful-

filled:

5.1. R̄ŒaŒi, mŒi
… R̄aj, mj

for any i ¥ {1,..., kŒ};

5.2. for any j=1,..., s the family {R −

aŒi, mŒi
: i=1,..., kŒ} (recall

R −

aŒi, mŒi
=R −

aŒi, mŒi
(j) for any i=1,..., kŒ=kŒ(j)) is a family of pairwise non-

interacting rectangles;

5.3. sRŒ=+1
¯RŒ where RŒ — RŒ(j) :=1kŒ

i=1 R̄Œa
−

i , m −

i

5.4. either sR̄aj, mj
0RŒ=Co

R̄aj, mj
0RŒ or sR̄aj, mj

0RŒ=Ce
R̄aj, mj

0RŒ;

6. for any i, j ¥ {1,..., s} the two rectangles Raj, mj
and Rai, mi

must be
non-interacting if sR̄aj, mj

0RŒ(j)=sR̄ai, mi
0RŒ(i).
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3.3. Basic Tools

In this section we discuss the main tools that will be used in the
following: first of all we notice that in our model the difference of energy
between two configurations s, g ¥ S is not sufficient to say if the system
prefers to jump from s to g or vice versa. Indeed, there exist pairs of con-
figurations s, g ¥ S such that the system sees a sort of energetic barrier
both in the s Q g and in the g Q s transition. Let us define a sort of
‘‘communicating height’’ H(s, g) for each pair (s, g) ¥ S×S of the con-
figuration space such that

PL(s, g)=: e−[H(s, g) − H(s)]. (3.3)

More precisely, we consider a new hamiltonian H: S×S 2 SQ R defined
as in (2.4) for any s ¥ S and such that

H(s, g) :=H(s) − log PL(s, g). (3.4)

Note that, by virtue of the detailed balance principle (2.5), we have
H(s, g)=H(g, s). Remark: if either PL(s, g) or PL(g, s) tends to zero
in the limit b Q . then H(s, g)=max{H(s), H(g)}+o(exp{ − bc}), for
some strictly positive constant c; in other words in these cases the energetic
barrier seen by the system is exactly the difference of energy between the
two configurations.

We notice that in ref. 13 it has already been remarked that the com-
municating heights allow to define the most general kind of reversible
dynamics (see Section 3 in ref. 13). Now we want to restate in this setup
some of the results of ref. 13 that will be our basic tools in next sections.

We say that a configuration s ¥ S is a local minimum of the energy iff
H(s, g) − H(s) > 0 for any g ¥ S0{s}. The local minima of the energy are
nothing but the stable configurations defined above. A sequence of con-
figurations w={w0,..., wn} is called a ‘‘path;’’ |w| is the number of config-
urations in the path. We call ‘‘height along the path w’’ the real number

Fw := max
i=1,..., |w|

H(wi − 1, wi). (3.5)

Given two configurations s, g ¥ S we denote by G(s, g) the set of all the
paths w={w0,..., wn} such that w0=s and wn=g. The ‘‘minimal height’’
(minmax) between s and g is defined as

F(s, g) := min
w ¥ G(s, g)

Fw= min
w ¥ G(s, g)

max
i=1,..., |w|

H(wi − 1, wi). (3.6)
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We remark that the function F: S×S0 R is symmetric, namely
F(s, g)=F(g, s) for any s, g ¥ S.

We give, now, the important notion of cycle: we say that A … S is a
cycle iff for each s, g ¥ A

F(s, g) < min
z ¥ S0A

F(s, z). (3.7)

In other words starting from any configuration in the cycle A, the energe-
tic barrier that must be bypassed to visit any other configuration in A is
smaller than the one seen to exit the cycle itself.

Given a cycle A … S we denote by F(A) the set of the minima of the
energy in A, namely

F(A) :={s ¥ A : min
g ¥ A

H(g)=H(s)}; (3.8)

we also write H(F(A))=H(g) with g ¥ F(A). Given g ¥ F(A) we define

F(A) := min
z ¥ S0A

F(g, z) (3.9)

(it is trivial that F(A) does not depend on the choice of g ¥ F(A)), and the
set

U(A) :={z ¥ S0A : ,g ¥ A such that H(g, z)=F(A)}. (3.10)

Now, for any g ¥ S let Pg be the probability over the process when the
system is prepared in s0=g and

yD :=inf{n \ 0 : sn ¥ D} (3.11)

for any D … S. We restate, without proof, some of the results of ref. 13
that we will use in the sequel:

Lemma 3.4. Given G … S, let s ¥ G and sŒ ¥ S0G such that: (i)
there exist sg ¥ S0G and a path w={w0=s,..., wn=sg} such that wi ¥ G
and H(wi − 1, wi) < H(wn − 1, wn)=: C for any i=1,..., n − 1; (ii) there exists
a path wŒ={w −

0=sg,..., w −

n=sŒ} such that w −

i ¥ S0G and H(w −

i − 1, w −

i) < C

for any i=1,..., n; (iii) mins ¥ G, g ¥ S0G H(s, g) \ C if and only if s=wn − 1

and g=wn. If we define

A :={g ¥ S : ,w={w0=g,..., wn=s} such that

w1,..., wn − 1 ¥ G and Fw < C}
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then (i) A … G; (ii) A is a cycle with F(A)=C and sg ¥ U(A); (iii)
F(s, sŒ)=C (that is C is the minmax between s and sŒ).

Lemma 3.5. Given a cycle A … S,

(i) for all e > 0 and for all s ¥ F(A)

Ps(exp{F(A) − H(F(A)) − be} < yS0A

< exp{F(A) − H(F(A))+be}) Łb Q . 1 (3.12)

(ii) there exists d > 0 such that for any s, g ¥ A

Ps(yg < yS0A, yg < exp{F(A) − H(F(A)) − bd}) Łb Q . 1 (3.13)

(iii) for any s ¥ A

Ps(syS0A
¥ U(A)) Łb Q . 1 (3.14)

(iv) for any s ¥ A, g ¥ U(A), e > 0 and b sufficiently large

Ps(syS0A
=g) \ e−be (3.15)

We note that the lower bound on yS0A in the statement (i) in
Lemma 3.5 is an easy consequence of the reversibility property:

Lemma 3.6. For any s, g ¥ S such that F(s, g) − H(s) > 0 and for
any d > 0

Ps(yg > exp{F(s, g) − H(s) − bd}) Łb Q . 1. (3.16)

Few important remarks which are very peculiar of our PCA model. As
it has been noticed above if the system is in the state g ¥ S, then there
exists a unique configuration where it jumps with high probability. This
configuration has been denoted by Tg. Thus, given g ¥ S we define the
downhill path starting from g as the unique path w={w0,..., wn} such that
w0=g, Twi − 1=wi for any i=1,..., n, and wn is a trap; we also set ĝ :=wn.
We remark that to each g ¥ S we can associate either a unique stable con-
figuration or a unique stable pair. We define the basin of attraction of a
trap g ¥ M as the set

B(g) :={z ¥ S : ẑ=g} (3.17)
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and the truncated basin of attraction B̄(s) … B(s) as the set of all the con-
figurations g ¥ B(s) such that

F(g, s) < min
z ¥ S0B(g)

F(g, z). (3.18)

It can be easily proven that B̄(g) is a cycle.
In the following we will often have to evaluate U(g) :=minz ¥ S0B(g) F(g, z)

for some trap g ¥ M. A convenient way to proceed is the following: say
that a path w={w0,..., wn} is uphill iff the path wŒ={w −

0,..., w −

n}, where
w −

i=wn − i for any i=0,..., n, is downhill. Consider the set X(g) of paths
w={w0,..., wn} such that w0=g, {w0,..., wn − 1} is an uphill path in B(g)
and wn ¥ S0B(g). We remark that U(g), in words the barrier that must be
bypassed to exit from the basin B(g), is given by

U(g)= min
w ¥ X(g)

Fw. (3.19)

3.4. Behavior of Traps

In this subsection we clarify the geometrical conditions for the shrink-
ing or the growing of a trap, that is we study the evolution of the system
prepared in a stable configuration or in a stable pair. We let l :=[2/h]+1.

We first consider the case of a single rectangular droplet of chessboard
or pluses in the sea of minuses; we show that if the droplet is small enough,
namely its shortest side is smaller than l, then it tends to shrink, otherwise
it tends to grow.

Proposition 3.7. Let z ¥ {+1
¯
, Ce, Co}; g ¥ M such that there exists

a rectangle Ra, m, with 2 [ a [ m, such that gL0 R̄a, m
=−1

¯L0 R̄a, m
and

gR̄a, m
=zR̄a, m

. Thus

(ii) if a < l, then g is subcritical, that is Pg(y−1
¯

< ySC 2 S+1
¯
) Łb Q . 1,

and for any e > 0

Pg(exp{2bh(a − 1) − be} < y−1
¯

< exp{2bh(a − 1)+be}) Łb Q . 1; (3.20)

(ii) if a \ l, then g is supercritical, that is Pg(ySC 2 S+1
¯

< y−1
¯
) Łb Q . 1,

and for any e > 0

Pg(exp{2b(2 − h) − be} < ySC 2 S+1
¯

< exp{2b(2 − h)+be}) Łb Q . 1. (3.21)

Similar results can be stated in the case of a single droplet trap
plunged inside the sea of chessboard.
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Proposition 3.8. Let C ¥ C and g ¥ M a trap such that there exists
a rectangle Ra, m, with 2 [ a [ m, and gL0 R̄a, m

=CL0 R̄a, m
and gR̄a, m

=+1
¯ R̄a, m

.
Thus

(i) if a < l, then Pg(yC < y+1
¯
) Łb Q . 1, and for any e > 0

Pg(exp{2bh(a − 1) − be} < yC < exp{2bh(a − 1)+be}) Łb Q . 1; (3.22)

(ii) if a \ l, then Pg(y+1
¯

< yC) Łb Q . 1, and for any e > 0

Pg(exp{2b(2 − h) − be} < y+1
¯

< exp{2b(2 − h)+be}) Łb Q . 1. (3.23)

Now, we give two heuristic arguments supporting the propositions
above. We consider the case a=m even and gR̄a, a

=Co
R̄a, a

: by using (2.9) one
can show that the energy of g, with respect to the configuration − 1

¯
, is

Eh
L(g) − Eh

L(−1
¯
)=−2ha

2+8a. (3.24)

Thus, Eh
L(g) − Eh

L(−1
¯
) is a parabola whose maximum is achieved at

a=2/h suggesting the conjecture that the critical length is 2/h.
A dynamical argument strengthens this conjecture. Consider the most

efficient growing mechanism: from results in Table I this mechanism is
the appearance of a single plus protuberance adjacent to one of the four
sides of the rectangle. The probability associated to such an event
is exp{ − 2b(2 − h)}, so that the typical time to see this event is ygr ’

exp{2b(2 − h)}. In Fig. 3 it is shown that once the protuberance has
appeared on one the four sides of the rectangle, with high probability a
new slice is filled with chessboard.

Now we have to look for the efficient shrinking mechanism: Table I
suggests this mechanism is the ‘‘minus corner persistence,’’ that is a minus
spin on one of the four corners of the rectangle is kept fixed during the
flip–flop of the stable pair.

By reiterating this mechanism a − 1 times (see Fig. 4) a full slice of the
droplet is erased. In terms of probability each step costs exp{ − 2bh}, hence
the typical shrinking time is ysh ’ exp{2bh(a − 1)}. By comparing ygr and ysh

we find that the critical length should be 2/h.

Fig. 3. Growth of a chessboard droplet inside the sea of minuses: appearing of a protu-
berance.

198 Cirillo and Nardi



Fig. 4. Shrinking of a chessboard droplet inside the sea of minuses: persistence of a minus
corner.

A similar argument can be done in the case of a plus droplet: the
growing mechanism is still the formation of a protuberance. About the
shrinking mechanism: after a first step of ‘‘corner erosion,’’ like in the stan-
dard Glauber case a corner is flipped into minus, one minus spin appears at
the corner. The best thing to do, as a second step, is to flip simultaneously
both the minus spin and its adjacent plus spin. This event costs still
exp{ − 2bh} and results in a shift of the minus ‘‘lacuna’’ on the side of the
rectangle. By iterating this mechanisms a sort of merlon is formed and a
stable pair is reached in a typical time ysh ’ exp{2bh(a − 1)}.

A stronger version of the above propositions can be proved; it is pos-
sible to describe in detail the way in which droplets shrink or grow. Indeed
we state:

Proposition 3.9. (i) Let C ¥ C, g ¥ M such that there exists a rec-
tangle Ra, m, with a [ m, such that gL0 R̄a, m

=−1
¯L0 R̄a, m

and gR̄a, m
=CR̄a, m

. Let
AŒ the set of traps s ¥ M such that there exists a rectangle R with side
lengths (a, m+1) or (a+1, m) such that R̄ ‡ R̄a, m, sL0 R̄=−1

¯L0 R̄ and
sR̄=CR̄. Let Aœ the set of traps s ¥ M such that there exists a rectangle R
with side lengths (a, m − 1) such that R̄ … R̄a, m, sL0 R̄=−1

¯L0 R̄ and sR̄=CR̄.
If l [ a then

U(g)=H(g)+2b(2 − h) and Pg
1syS0B(g)

¥ 0
s ¥ AŒ

B(s)2Łb Q . 1,

that is starting from g the system exits B(g) and enters into one of the
basins B(s), for some s ¥ AŒ. If a < l then

U(g)=H(g)+2bh(a − 1) and Pg(syS0B(g)
¥ Aœ) Łb Q . 1,

that is starting from g the system exits B(g) and reaches directly one of the
traps s in Aœ.

(ii) Let C ¥ C, g ¥ M such that there exists a rectangle Ra, m, with
a [ m, such that gL0 R̄a, m

=CL0 R̄a, m
and gR̄a, m

=+1
¯ R̄a, m

. Let AŒ the set of traps
s ¥ M such that there exists a rectangle R with side lengths (a, m+1) or
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(a+1, m) such that R̄ ‡ R̄a, m, sL0 R̄=CL0 R̄ and sR̄=+1
¯ R̄. Let Aœ the set of

traps s ¥ M such that there exists a rectangle R with side lengths (a, m − 1)
such that R̄ … R̄a, m, sL0 R̄=CL0 R̄ and sR̄=+1

¯ R̄. If l [ a then

U(g)=H(g)+2b(2 − h) and Pg
1syS0B(g)

¥ 0
s ¥ AŒ

B(s)2Łb Q . 1,

that is starting from g the system exits B(g) and enters into one of the
basins B(s), for some s ¥ AŒ. If a < l then

U(g)=H(g)+2bh(a − 1) and Pg(syS0B(g)
¥ Aœ) Łb Q . 1,

that is starting from g the system exits B(g) and reaches directly one of the
traps s in Aœ.

Finally, we state under which conditions a general trap shrinks. A trap
is made of rectangles of pluses or chessboard inside a minus or chessboard
sea. The idea is that the configuration shrinks iff each single rectangular
cluster shrinks. Note that the following proposition strictly contains Pro-
positions 3.7 and 3.8.

Proposition 3.10. (i) Let C ¥ C and g ¥ MC. There exist k \ 1
pairwise non-interacting rectangles Ra1, m1

,..., Rak, mk
such that 2 [ ai [ mi [

L−2 for any i=1,..., k, gR=+1
¯R

and gL0R=CL0R where R :=1k
i=1 R̄ai, mi

.
Thus, if ai < l for any i=1,..., k, then Pg(yC < y+1

¯
) Łb Q . 1, and for any

e > 0

Pg(exp{2bh(a − 1) − be} < yC < exp{2bh(a − 1)+be}) Łb Q . 1, (3.25)

where a :=max{a1,..., ak}. If there exists j ¥ {1,..., k} such that aj \ l, then
Pg(y+1

¯
< yC) Łb Q . 1, and for any e > 0

Pg(exp{2b(2 − h) − be} < y+1
¯

< exp{2b(2 − h)+be}) Łb Q . 1 (3.26)

(note that in the case k=1 we recover Proposition 3.8). (ii) We consider,
now, a situation where in a sea of minuses there are rectangles of chess-
board and, possibly, rectangles of pluses inside the sea of minuses or inside
the chessboard droplets. More precisely, let g ¥ M. We suppose that there
exist k \ 1 rectangles Ra1, m1

,..., Rak, mk
, with 2 [ ai [ mi [ L − 2 for any

i=1,..., k, and there exists an integer s ¥ {1,..., k} such that the conditions
of point (iii) in Proposition 3.3 are satisfied (note that in the case s=0 the
trap is a stable configuration; in the case s=0 and k=1 Proposition 3.7 is
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recovered). Thus, if ai < l for any i=1,..., k, then Pg(y−1
¯

< ySC 2 S+1
¯
)

Ł
b Q . 1, and for any e > 0

Pg(exp{2bh(a − 1) − be} < y−1
¯

< exp{2bh(a − 1)+be}) Łb Q . 1, (3.27)

where a :=max{a1,..., ak}. If there exists j ¥ {1,..., k} such that aj \ l, then
g is supercritical, that is Pg(yS0S− 1

¯
< y−1

¯
) Łb Q . 1, and for any e > 0

Pg(exp{2b(2 − h) − be} < yS0S− 1
¯

< exp{2b(2 − h)+be}) Łb Q . 1. (3.28)

3.5. Exit from the Metastable Phase

We can now give the theorem describing the exit from the metastable
state. Suppose that the system is prepared in the metastable state, s0=−1

¯
,

in the following theorem we state that the first exit time y+1
¯

is exponentially
large in b and we find its order of magnitude. Moreover, we state that
before reaching +1

¯
the system visits C={Co, Ce} and that the typical time

to jump from − 1
¯

to the chessboards is the same as the time needed to
jump from the chessboards to +1

¯
. More precisely, let us denote by

Q−1
¯

… S the set of configurations g ¥ S such that there exists a rectangle
Rl, l such that gL0 R̄l, l

=−1
¯L0 R̄l, l

and gR̄l, l
=CR̄l, l

with C ¥ C. Let g ¥ Q−1
¯
,

we call ‘‘protocritical height’’ the energy

C :=Eh
L(g) − Eh

L(−1
¯
)+2h(l − 1)=−2hl2+2l(4+h) − 2h, (3.29)

where the second equality follows from (3.24). In some sense bC is the
communication height between the largest subcritical droplet and the
smallest supercritical droplet; more precisely: let O−1

¯
… S the set of con-

figurations g ¥ S−1
¯

such that there exists a rectangle Rl − 1, l such that
gL0 R̄l − 1, l

=−1
¯L0 R̄l − 1, l

and gR̄l − 1, l
=CR̄l − 1, l

with C ¥ C.
Let g ¥ O−1

¯
: we call protocritical droplet corresponding to g one of the

configurations obtained by flipping in g a minus spin external to Rl − 1, l and
adjacent to one of the plus spins of the internal chessboard and all the
spins associated to sites inside Rl − 1, l. We let p−1

¯
(g) the set of protocritical

droplets corresponding to g and P−1
¯

:=1g ¥ O− 1
¯

p−1
¯
(g), the collection of the

protocritical droplets. It is easy to check that H(g, z)=C for any g ¥ O−1
¯and z ¥ p−1

¯
(g).

Theorem 3.11. With the notation introduced above: (i) the system
visits P−1

¯
before visiting C, namely

P−1
¯
(yP− 1

¯
< yC) Łb Q . 1;
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(ii) the system visits C before visiting +1
¯
, namely

P−1
¯
(yC < y+1

¯
) Łb Q . 1;

(iii) for any e > 0

P−1
¯
(ebC − be < yC < ebC+be) Łb Q . 1;

(iv) for any e > 0

P−1
¯
(ebC − be < y+1

¯
< ebC+be) Łb Q . 1.

The proof of Theorem 3.11 will be the argument of Section 4.
In the above theorem we have stated that during the exit from the

metastable − 1
¯

state, the system visits the competing metastable state C
and, finally, reaches the stable state +1

¯
. Now, we want to give a more

precise description of the path followed by the system during its exit
from − 1

¯
; first of all we define a suitable tube T−1

¯
. Let O (0)

−1
¯

:=O−1
¯

the
set of l × (l − 1) chessboard droplets in the sea of minuses. For each
k=0, 1,..., 2l − 6 we define recursively the sets O (k)

−1
¯
(g (k − 1)), where

g (k − 1) ¥ O (k − 1)
−1

¯
(g (k − 2)): let g (k − 1) ¥ O (k − 1)

−1
¯

(g (k − 2)) a configuration such that
there exists a rectangle Ra, m, with 2 [ a [ m, such that g (k − 1)

R̄a, m
=CR̄a, m

, with
C ¥ C, and g (k − 1)

L0 R̄a, m
=−1

¯L0 R̄a, m
. Then we define O (k)

−1
¯
(g (k − 1)) as the collection

of configurations z such that there exists a rectangle Ra, m − 1 such that
R̄a, m − 1 … R̄a, m, zL0 R̄a, m − 1

=−1
¯L0 R̄a, m − 1

and zR̄a, m − 1
=CR̄a, m − 1

, with C ¥ C. We
remark that O (2l − 7)

−1
¯

(g (2l − 8)) is a set of 2 × 2 chessboard droplets and
O (2l − 6)

−1
¯

(g (2l − 7)) is made of two configurations with a plus spin in the sea of
minuses.

We note that Proposition 3.9 implies that the process enters, with high
probability in the limit b Q ., into the set O (i+1)

−1
¯

(g (i)), when it exits from
the basin of attraction B(gi) with gi ¥ O (i)

−1
¯
(g (i − 1)).

Now, given the 2l − 5 configurations gi ¥ O (i)
−1

¯
(g (i − 1)) for any

i=0, 1,..., 2l − 6 and the 2l − 6 integer numbers t1 < · · · < t2l − 6 we set
t0=0 and t2l − 5=t2l − 6+1, and we say that a path w={wt0

,..., wt2l − 5
}

belongs to the set T(g (0),..., g (2l − 6); t1,..., t2l − 6) iff wti
=g (i) and wti

,...,
wti+1 − 1 ¥ B̄(g (i)) for any i=0,..., 2l − 6 and wt2l − 5

=−1
¯
. Note that a path in

T(g (0),..., g (2l − 6); t1,..., t2l − 6) is one of the ‘‘standard’’ shrinking paths that
the system follows when a chessboard droplet g (0) ¥ O (0)

−1
¯

shrinks. More
precisely, given g (0) ¥ O (0)

−1
¯
, we define the tube

Tg
(0) := 0

2l − 6

i=1
0

g
(i)

¥ O
(i)(g

(i − 1))

0
t1 < · · · < t2l − 6

T(g (0),..., g (2l − 6); t1,..., t2l − 6). (3.30)
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In other words Tg
(0) is defined as the set of paths w ¥ G(g (0), −1

¯
) such that

there exist 2l − 6 configurations g (i) ¥ O (i)
−1

¯
(g (i − 1)) with i=1,..., 2l − 6 and

2l − 6 integer numbers t1 < · · · < t2l − 6 such that w ¥ T(g (0),..., g (2l − 6);
t1,..., t2l − 6). We state, now, the following lemma:

Lemma 3.12. Let g0 ¥ O−1
¯
, we have

Pg
(0)(the trajectory {s0,..., sy− 1

¯
} ¥ Tg

(0)) Łb Q . 1.

Proof of Lemma 3.12. The lemma easily follows by applying
recursively Proposition 3.9 and the Markov property. L

Finally we define the exit tube T−1
¯
: a path w={w0,..., wn} is an

element of T−1
¯

iff there exist 2l − 5 configurations g (i) ¥ O (i)
−1

¯
(g (i − 1)) with

i=0, 1,..., 2l − 6, the integer numbers t1 < · · · < t2l − 6=n − 1 and a path
wŒ={w −

0,..., w −

n} ¥ T(g (0),..., g (2l − 6); t0,..., t2l − 6) such that wi=w −

n − 1 for
any i=0,..., n. In other words T−1

¯
is the set of paths obtained by time

reversing one of the standard shrinking paths associated to the droplets
in O−1

¯
.

Theorem 3.13. Let st be the process started at − 1
¯
, let ȳ−1

¯
:=

max{t < yS0A− 1
¯

: st=−1
¯
}, then

P−1
¯
(syS0A− 1

¯

¥ P−1
¯
, the trajectory {sȳ− 1

¯
, sȳ− 1

¯
+1,..., syS0A− 1

¯
− 1} ¥ T−1

¯
) Łb Q . 1.

Proof of Theorem 3.13. The theorem is a straightforward con-
sequence of the time–reversing argument (see refs. 5 and 13) and
Lemma 3.12. L

4. THE MINMAX BETWEEN THE METASTABLE AND THE STABLE

STATE

The proof of the theorems describing the exit of the system from the
metastable state is based on the general lemmata given in the Section 3.3.
The highly not trivial model dependent part consists in finding the minmax
between the metastable and the stable phases. It is clear that new ideas
must be used to answer this question in the case of a parallel dynamics with
respect to the Glauber case. Indeed, the fact that the system can jump from
any configuration to any other, highly complicates the structure of the
possible trajectories in the configuration space.
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First of all we define a sort of generalized basin of attraction of − 1
¯
:

let G−1
¯

… S−1
¯

the set

G−1
¯

:={s ¥ S−1
¯

: ŝ=−1
¯

or ŝ subcritical}, (4.1)

where ŝ subcritical means that ŝ is a trap such that there exist k \ 1 rec-
tangles on the dual lattice Ra1, m1

,..., Rak, mk
, with 2 [ ai [ mi [ L − 2 for any

i=1,..., k, there exists s ¥ {0,..., k} such that the conditions of point (iii) in
Proposition 3.3 are satisfied (note that in the case s=0 the trap is a stable
configuration) and ai < l for any i=1,..., k. To fix the ideas: if ŝ consisted
of a single chessboard rectangle in the sea of minuses, then its shortest side
length a should be smaller than l. The set G−1

¯
is a sort of ‘‘generalized’’

basin of attraction of the state − 1
¯
, in the sense that for any s ¥ G−1

¯
the

process started at s would visit − 1
¯

before exiting G−1
¯

with high probability
in the zero temperature limit, namely

Ps(y−1
¯

< yS0G− 1
¯
) Łb Q . 1. (4.2)

In the following lemma we state the main properties of the basin G−1
¯
: C is

the minimal energy barrier that must be bypassed to exit G−1
¯
; a minimal

exit path from G−1
¯

reaches S0G−1
¯

in a protocritical droplet g ¥ P−1
¯
.

Lemma 4.1. Let g ¥ P−1
¯
, (i) there exists a path w={w0=−1

¯
,...,

wn=g} such that wi ¥ G−1
¯

and H(wi − 1, wi) < H(wn − 1, wn)=H(−1
¯
)+bC

for any i=1,..., n − 1; (ii) there exists a path wŒ={w −

0=g,..., w −

n ¥ C} such
that w −

i ¥ S0G−1
¯

and H(wi − 1, wi) < H(−1
¯
)+bC for any i=1,..., n. (iii)

F(G−1
¯
)=H(−1

¯
)+bC; (iv) for all s ¥ G−1

¯
and g ¥ S0G−1

¯
, H(s, g)=

bC+H(−1
¯
) if and only if s ¥ O−1

¯
and g ¥ p−1

¯
(s).

We postpone the proof of the above lemma to the end of this section.
Let us define the set

A−1
¯

:={g ¥ S : ,w={w0=g,..., wn=−1
¯
} such that

w1,..., wn − 1 ¥ G−1
¯

and Fw < H(−1
¯
)+bC}

From Lemma 3.4 and Lemma 4.1 we have that A−1
¯

is a cycle, A−1
¯

… G−1
¯
,

F(A−1
¯
)=H(−1

¯
)+bC, U(A−1

¯
) ‡ P−1

¯
and F(−1

¯
, C)=bC+H(−1

¯
), with

C ¥ C (that is bC+H(−1
¯
) is the minmax between − 1

¯
and C).

Proof of Theorem 3.11. Let st be the process started at − 1
¯
. We

first try to describe the exit from the basin G−1
¯

by applying Lemma 3.5 and
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using recurrence in G−1
¯
. We firstly remark that from the reversibility lemma

we have that for each e > 0

P−1
¯
(yS0G− 1

¯
> ebC − be) Łb Q . 1 (4.3)

Now, from item (iv) in Lemma 3.5, from the definition of G−1
¯

and from
Proposition 3.9 we have that for each s ¥ G−1

¯
and each e, d > 0

Ps(,t < ebC+bd, st ¥ S0G−1
¯
) \ e−be (4.4)

For any e > 0, we set T(e) :=exp{bC+be}, N(e)=[exp{be/2}] − 1 ¥ N,
and consider the intervals Ik(e) :=T(e) exp{ − be/2}[k, k+1) for any
k=0,..., N(e). Then

P−1
¯
(yS0G− 1

¯
< ebC+be)=1 − P−1

¯
(yS0G− 1

¯
> ebC+be)

=1 − D
N(e)

k=0
P−1

¯
(st ¥ G−1

¯
for all t ¥ Ik(e))

=1 − sup
g ¥ G− 1

¯

[1 − Pg(,t < ebC+be/2, st ¥ S0G−1
¯
)]N(e)

\ 1 − [1 − e−be/2]N(e) (4.5)

where we have used (4.4). From (4.5) we get the upper bound on the exit
time

P−1
¯
(yS0G− 1

¯
< ebC+be) Łb Q . 1 (4.6)

for any e > 0. Now, by using the reversibility lemma we have that

P−1
¯
(syS0G− 1

¯

¥ P−1
¯
) Łb Q . 1 (4.7)

and recalling (4.3) and (4.6) we can state that the system prepared in − 1
¯exits G−1

¯
through P−1

¯
in a typical time exp{bC}. Moreover, C … S0G−1

¯(the chessboards do not belong to G−1
¯
) and Eq. (4.7) imply that P−1

¯
is

visited before C, more precisely

P−1
¯
(yP− 1

¯
< yC) Łb Q . 1,

completing the proof of the statement (i) in Theorem 3.11.
Now, we use the Markov property to restart the system in some con-

figuration of P−1
¯
. Point (i) in Proposition 3.9 directly implies point (ii) in

Theorem 3.11. Moreover, point (iii) in Theorem 3.11 is easily proven by
remarking that bC > 2b(2 − h) and by using Proposition 3.9.
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Up to now we have described the jump from − 1
¯

to the chessboards.
Now we use the Markov property to restart the system in C ¥ C and we
prove point (iv) in Theorem 3.11 by following the same scheme used above.
We just sketch the proof: let GC … SC be the set

GC :={s ¥ SC : ŝ ¥ C or ŝ subcritical}, (4.8)

where ŝ subcritical means that ŝ is a trap such that k \ 1 pairwise non-
interacting rectangles Ra1, m1

,..., Rak, mk
such that 2 [ ai [ mi [ L − 2 and

ai < l for any i=1,..., k, gR=+1
¯R

and gL0R=CL0R where R :=1k
i=1R̄ai, mi

and C ¥ C. To fix the ideas: if ŝ consisted of a single plus rectangle in the
sea of chessboard, then its shortest side length a should be smaller than l.
Then we state the analogous of Lemma 4.1: let us denote by QC the set of
configurations g ¥ S such that there exists a rectangle Rl, l such that
gL0 R̄l, l

=CL0 R̄l, l
and gR̄l, l

=+1
¯ R̄l, l

with C ¥ C. We denote by PC the set of
configurations g ¥ S such that there exist a rectangle Rl − 1, l, a site
x ¥ L0 R̄l − 1, l, adjacent to one of the two sides of R̄l − 1, l of length l, and
C ¥ C such that C(x)=−1, gL0(R̄l, l 2 {x})=CL0(R̄l, l 2 {x}), gR̄l, l

=+1
¯ R̄l, l

and
g(x)=+1.

Lemma 4.2. Let C ¥ C, g ¥ PC, (i) there exists a path w={w0=C,
w1,..., wn=g} such that wi ¥ GC and H(wi − 1, wi) < H(wn − 1, wn)=
H(C)+bC for any i=1,..., n − 1; (ii) there exists a path wŒ={w −

0=
g,..., w −

n=+1
¯
} such that w −

i ¥ S0GC and H(wi − 1, wi) < H(C)+bC for
any i=1,..., n. (iii) F(GC)=H(C)+bC.

As before the statement (iv) in Theorem 3.11 follows from the
Lemmata 4.2, 3.4, 3.5, and point (ii) in Proposition 3.9. L

Proof of Lemma 4.1. We start by proving point (i): let us consider
a protocritical droplet g ¥ P−1

¯
and the l × (l − 1) chessboard droplet

g (0) ¥ O−1
¯

such that p−1
¯
(g (0))=g. First of all we note that: H(g, g (0))=

H(−1
¯
)+bC.

Now, recall O (0)
−1

¯
=O−1

¯
and consider a sequence of configurations

g (1) ¥ O (1)
−1

¯
(g (0)),..., g2l − 6 ¥ O (2l − 6)

−1
¯

(g (2l − 7)). From Proposition 3.9 we have
that for any i=1,..., 2l − 7 the barrier to exit the related basin of attraction
is

U(g (i)) [ H(g (i))+2bh(l − 2) < H(g (0))+2bh(l − 2)

< H(g (0))+2b(2 − h)=H(−1
¯
)+bC.

Note that for i=0, 1 the first inequality is, indeed, an equality.
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The above inequalities allow to construct a path {w0=g (0),..., wn=−1
¯
}

¥ Tg
(0) connecting g (0) to − 1

¯
and such that H(wi, wi+1) < H(−1

¯
)+bC for

any i=0,..., n − 1. Finally, we remark that the path {w −

0=wn, w −

1=wn − 1,...,
w −

n=w0, w −

n+1=g} satisfies the properties of point (i). A similar construc-
tion can be repeated for point (ii).

Now, we come to the main points (iii) and (iv): our goal is to prove
that F(G−1

¯
)=H(−1

¯
)+bC. First of all we notice that point (i) above

implies

F(G−1
¯
) [ bC+H(−1

¯
),

hence our calculation is reduced to prove the lower bound F(G−1
¯
) \

bC+H(−1
¯
). We have to examine all the paths connecting G−1

¯
with

S0G−1
¯
: such a path {w0, w1,..., wn} has at least a direct jump from G−1

¯to S0G−1
¯
, that is there exists k ¥ {0,..., n − 1} such that wk ¥ G−1

¯
and

wk+1 ¥ S0G−1
¯
. Hence, for any w connecting G−1

¯
with its exterior we have

Fw \ min
s ¥ G− 1

¯
, g ¥ S0G− 1

¯

H(s, g).

Given s ¥ G−1
¯
, we consider the configuration g ¥ S0G−1

¯
that can be

reached with the smallest energetic cost, namely g ¥ S0G−1
¯

is such that

H(s, g)= min
z ¥ S0G− 1

¯

H(s, z) (4.9)

We have to prove that H(s, g) \ bC+H(−1
¯
) with the equality valid if and

only if s ¥ O−1
¯

and g ¥ p−1
¯
(s).

First of all we note that PL(s, g) Łb Q . 0 otherwise we would have
g ¥ B(ŝ). From Table I we get that there exists x ¥ L such that

log px(g(x) | s)=−2b(2 − h)+o(e−bc) (4.10)

for some positive constant c. We consider, then, z=gx, and we remark that
(4.9) implies z ¥ G−1

¯
. Note that

log PL(s, g)=log PL(s, z) − log px(z(x) | s)+log px(g(x) | s) (4.11)

that, together with (3.4), implies

H(s, g)=H(s, z) − log PL(s, g)+log PL(s, z)

=H(s, z) − log px(g(x) | s)+log px(z(x) | s)

\ H(z) − log px(g(x) | s)+log px(z(x) | s) (4.12)
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We can characterize ẑ as follows: by using Propositions 3.3 and 3.10 we
have that there exist k \ 1 rectangles Ra1, m1

,..., Rak, mk
satisfying the condi-

tions of point (iii) in Proposition 3.3, with respect to the configuration ẑ, and
such that ai < l for any i=1,..., k.

Let us consider zŒ ¥ S such that z −

1k
i=1 R̄ai, mi

=−1
¯1k

i=1 R̄ai, mi
and z −

L01k
i=1 R̄ai, mi

=zL01k
i=1 R̄ai, mi

. By recalling that there exist an uphill path joining ẑ to z it
is easy to prove that there exist s \ 0 rectangles R1, mk+1

,..., R1, mk+s
, with

mk+i \ 1 for all i=1,..., s, such that z −

L01s
i=1 R̄1, mk+i

=−1
¯L01s

i=1 R̄1, mk+i
and zŒ

coincides with a chessboard or +1
¯

inside R̄1, mk+i
for all i=1,..., s.

We let bo
i (resp. bv

i ) the horizontal (resp. vertical) side length of the
rectangle Rai, mi

for any i=1,..., k+s. We set bo :=;k+s
i=1 bo

i , bv :=;k+s
i=1 bv

i

and we remark that

C
k+s

i=1
(ai+mi)=bo+bv. (4.13)

We suppose, now, bo+bv \ 2l. By a direct evaluation of the energy of
the rectangles it is easy to show the bound

E(z) − E(−1
¯
)=[E(ẑ) − E(−1

¯
)]+[E(z) − E(ẑ)]

\ [E(ẑ) − E(−1
¯
)]+[E(zŒ) − E(−1

¯
)]

\ 4(bo+bv) − 2h C
k+s

i=1
bo

i bv
i (4.14)

Where we have used that two of the R1, mi
, with i=k+1,..., k+s, rectangles

can interact iff they are filled with different parity chessboards. Now, by
using the subcriticality of ẑ, namely by using ai < l for any i=1,..., k
(recall ai=1 for all i=k+1,..., k+s), we have

C
k+s

i=1
bo

i bv
i [ (l − 1)[bo+bv − (l − 1)] (4.15)

indeed, let a=maxi=1,..., k ai, we have

C
k+s

i=1
bo

i bv
i = C

k+s

i=1
aimi [ a C

k+s

i=1
mi [ a[bo+bv − a] [ (l − 1)[bo+bv − (l − 1)]

where, in the last inequality, we have used bo+bv \ 2l. Now, recall
l=[2/h]+1=2/h+e for some e ¥ (0, 1), then the inequality

2 − h(l − 1)=2 − h 12
h
+e − 12=h(1 − e) > 0, (4.16)
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(4.14), (4.15), and the hypothesis bo+bv \ 2l imply

E(z) − E(−1
¯
) \ 4(bo+bv) − 2h(l − 1)[bo+bv − (l − 1)]

=(bo+bv)[4 − 2h(l − 1)]+2h(l − 1)2

\ 2l[4 − 2h(l − 1)]+2h(l − 1)2

=8l − 2hl2+2h (4.17)

Now, by using (4.10), (4.12), and (4.17) we get that for any d > 0 there
exist b large enough such that

H(s, g) − H(−1
¯
) \ 8bl − 2bhl2+4b − d (4.18)

Finally, from the equation above it follows, by choosing d small enough,
that H(s, g) > bC+H(−1

¯
).

We come, now, to the case bo+bv [ 2l − 1. First of all we notice that z

and g differ for the value of a single spin, this implies that in g there is a
single supercritical rectangle. More precisely, there exist k \ 1 rectangles
Ra

−

1, m −

1
,..., Ra

−

kŒ, m −

kŒ
satisfying the conditions of point (iii) in Proposition 3.3,

with respect to the configuration ĝ, and such that a
−

1 \ l and a
−

i < l for any
i=2,..., kŒ.

Let a
o (resp. a

v) the length of the horizontal (resp. vertical) side of the
supercritical rectangle Ra

−

1, m −

1
. We note that bo+bv [ 2l − 1 implies that

a
o+a

v is surely less than 4l; one can show, indeed, that a
o+a

v does not
exceed 2l+4. Under this condition it is easy to show the bound

E(ĝ) − E(−1
¯
) \ 4(a

o+a
v) − 2ha

o
a

v, (4.19)

indeed the energy of ĝ can be bounded from below with the energy of an
a

o × a
v chessboard droplet in the sea of minuses.

Now, let C ¥ {Ce, Co} such that g(x)=C(x) and consider the collec-
tion of rectangles R … {Ra1, m1

,..., Rak, mk
, R1, mk+1

,..., R1, mk+s
}, such that for

each R ¥ R either ẑR̄=+1
¯ R̄ or the chessboard part of R̄ coincides with C.

By remarking that R is a collection of pairwise not interacting rectangles,
we can find a positive integer D [ 9 such that if we let

V :=R̄a
−

1, m −

1
< 0

R ¥ R

R̄ and N :=: R̄a
−

1, m −

1
< 0

R ¥ R

R̄ :=|V| (4.20)

we get the lower bound

E(g) − E(−1
¯
) \ [E(ĝ) − E(−1

¯
)]+2h(N − D)

\ 4(a
o+a

v) − 2ha
o
a

v+2h(N − D) (4.21)
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where, in the last inequality, we have used (4.19). We remark that N is a
lower bound of the number of sites in Ra

−

1, m −

1
not belonging to any cluster of

z that will persist in ĝ.
We consider, now, the geometrical projection of the rectangles Rai , mi

,
with i=1,..., k+s, onto one of the horizontal (resp. vertical) sides of
Ra

−

1, m −

1
. Such a projection is a collection of, maybe not disjoint, segments;

we denote with po (resp. pv) the length of the union of these segments. By
definition we have po [ bo (resp. pv [ bv). We mention the following
interesting bound on N:

N \ a
o
a

v − popv (4.22)

Indeed, a
v sites of V are associated to each unit segment of the horizontal

side of Ra
−

1, m −

1
not belonging to the the projection of the rectangles Rai , mi

.
Moreover, po (not already counted) sites of V are associated to each unit
segment of the vertical side of Ra

−

1, m −

1
not belonging to the the projection of

the rectangles Rai, mi
. Hence,

N=|V| \ (a
o − po)a

v+(a
v − pv) po=a

o
a

v − popv.

Without loss of generality we can, now, suppose bo [ bv. This implies
bo [ l − 1, indeed if it were, by absurdity, bo \ l, then it would be
bo+bv \ 2l > 2l − 1. We distinguish among four different situations.

Case 1. po [ l − 2. By inserting (4.22) in (4.21) we get

E(g) − E(−1
¯
) \ 4(a

o+a
v) − 2ha

o
a

v+2h(a
o
a

v − popv) − 2hD

\ 4(a
o+a

v) − 2h(l − 2) a
v − 2hD (4.23)

where, in the last inequality, we use po [ l − 2 and pv [ a
v. Now, recalling

a
v \ l, for h small enough we have a

v \ D, hence

E(g) − E(−1
¯
) \ 4(a

o+a
v) − 2h(l − 1)a

v=4a
o+2a

v[2 − h(l − 1)]

\ 4l+2l[2 − h(l − 1)]=8l − 2hl2+2hl > C (4.24)

where we have used (4.16).

Case 2. po=l − 1 (recall po [ l − 1) and (a
o, a

v) ] (l, l). As in Case 1
we get

E(g) − E(−1
¯
) \ 4(a

o+a
v) − 2hpopv − 2hD \ 4(a

o+a
v) − 2h(l − 1) l − 2hD

(4.25)
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where in the last inequality we have used po=l − 1 and pv [ l, indeed

pv [ bv [ 2l − 1 − bo [ 2l − 1 − po=l

Hence, by using a
o+a

v \ 2l+1 we get

E(g) − E(−1
¯
) \ 4(2l+1) − 2h(l − 1) l − 2hD

=8l − 2hl2+2h(l − 1)+2h(l − D)+[4 − 2h(l − 1)]

=C+2h(l − D)+[4 − 2h(l − 1)] > C (4.26)

where we have used 4 − 2h(l − 1) > 0 (see inequality (4.16) and have chosen
h small enough in order to get l > D.

Case 3. po=l − 1, a
o=a

v=l and k+s \ 2. In this case we have the
easy estimate (see refs. 3 and 14) N \ 2l, hence from (4.21) we get

E(g) − E(−1
¯
) \ 8l − 2hl2+2h(2l − D). (4.27)

By choosing h small enough we get E(g) > C+E(−1
¯
).

Case 4. po=l − 1, a
o=a

v=l and k+s=1. We have to consider the
three configurations g1, g2 and g3 depicted in Fig. 5, where the l × (l − 1)
rectangle is filled with one of the two chessboards and g(x)=+1. By a
direct evaluation of the energy we have that

E(g2)=C − 4h, E(g1) − E(g2)=4+2h > 4h and

E(g3) − E(g2)=2h(l − 1) > 4h.

Now, starting from g2 the lowest energy jump toward G−1
¯

consists in revert-
ing all the spins inside the rectangle R and the plus spin associated to x.

Fig. 5. The three possible situations that must be taken into account in Case 4.
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The cost of such a jump is exp(−4bh), indeed we have to pay in order to
keep the two minuses around x. Finally we have that H(s, g)=bC+H(−1

¯
)

iff s ¥ O−1
¯

and g ¥ p−1
¯
(s). L

5. PROOF OF THE PROPOSITIONS

In this section we prove the propositions stated throughout the paper:
the tools which will be used are those outlined in Section 3.3.

Proposition 3.1 is a straightforward consequence of Lemma 3.2 and
the characterization of the local minima of the energy given in ref. 4.

Proof of Proposition 3.3. We just give a sketch of the proof. (i) Let
s ¥ S+1

¯
0{+1

¯
}. There exists x ¥ L with two neighboring sites in the sea of

pluses such that s(x)=−1, then we will have Tns(x)=+1 for all n \ 1,
hence s is not an element of a stable pair. (ii) Let C ¥ {Ce, Co} and s ¥ SC.
Suppose all the sites of L not belonging to the sea of chessboard are
occupied by pluses, and suppose these pluses form a single cluster X … L.
Consider the maximal Y … X such that for each y ¥ Y there exists a 2 × 2
subset of Y containing y. If Y is not rectangular shaped, then there exists x
such that s(x)=−1 and at least two among its neighbors belong to Y.
Then Tns(x)=+1 for all n \ 1 implies s is not an element of a stable pair.
The proof can be easily generalized to the case with more than a cluster of
pluses. (iii) The proof is similar to the one sketched for the case (ii). L

Proof of Proposition 3.7. Let us consider a rectangle Ra, m with
2 [ a [ m [ L − 2.

Case 1. Let g ¥ S−1
¯

be the trap such that gL0 R̄a, m
=−1

¯L0 R̄a, m
and

gR̄a, m
=Co

R̄a, m
; suppose a < l. Idea of the proof: we characterize the basin

B(g), that is we find U(g); then we suppose the system prepared in g

(namely s0=g) and, by means of Lemmata 3.4 and 3.5, we estimate both
yS0B̄(s) and syS0B̄(s)

.
By using (3.19), U(g) can be estimated via the construction of the

paths in X(g). First of all we consider all the possible transitions that can
be first steps for a path in X(g):

1. the configuration on R̄a, m is flipped together with a minus spin
in L0 R̄a, m adjacent to one of the plus spins in R̄a, m. A configuration
g1 ¥ S0B(g) is reached and H(g, g1) − H(g)=2b(2 − h)=: F1. Hence

U(g) [ H(g)+F1=H(g)+2b(2 − h). (5.1)
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As shown in Fig. 3 the unique downhill path starting from g1 ends in the
trap ĝ1 coincident with a chessboard inside a rectangle Ra+1, m (or Ra, m+1,
depending on which side the protuberance appeared) and with − 1

¯
outside.

We notice that the energy of g1 depends whether the plus protuberance
appears in the middle of one side or on the corner, but H(g, g1) does not
depend on this detail.

2. The configuration on R̄a, m is flipped together with a minus spin in
L0 R̄a, m with four neighboring pluses. A configuration g2 ¥ B(g) is reached
such that H(g, g2) − H(g)=2b(4 − h) > F1: this kind of steps can be
neglected.

3. All the spins inside R̄a, m are flipped excepted one corner minus
(if all the corner are pluses, then this step is considered after a full flip of
the configuration inside R̄a, m). A configuration g3 ¥ B(g) is reached such
that H(g, g3) − H(g)=2bh.

4. All the spins inside R̄a, m are flipped excepted one minus in the
middle (not on the corner) of one of the four sides of the rectangle (if such
a spin does not exist, this can happen in the case a=m=3, then this step is
considered after a full flip of the configuration inside R̄a, m). A configura-
tion g4 ¥ B(g) is reached such that H(g, g4) − H(g)=2b(2+h) > F1: this
kind of steps can be neglected.

5. All the spins inside R̄a, m are flipped excepted one minus with four
nearest neighboring pluses (if such a spin does not exist, this can happen
in the case a=m=3, then this step is considered after a full flip of the
configuration inside R̄a, m). A configuration g5 ¥ B(g) is reached such that
H(g, g5) − H(g)=2b(4+h) > F1: this kind of steps can be neglected.

6. All the spins inside R̄a, m are flipped excepted one plus spin. A con-
figuration g6 ¥ B(g) is reached such that H(g, g6) − H(g)=2b(4 − h) > F1:
this kind of steps can be neglected.

7. Two or more events among those listed above are performed
simultaneously: the energy cost is smaller than F1 only in the case of a
simultaneous persistence of k minus corners of the chessboard. All the
others multiple events can be neglected.

From the list above it follows that there exists a path wŒ={g, g1} ¥ X(g)
consisting of a single step of the first type; so FwŒ=H(g)+F1=H(g)
+2b(2 − h). The only paths w ¥ X(g) that can compete with wŒ are those
whose first step is a single or a multiple minus corner persistence. After
such a step (see, for instance, the first step in Fig. 4) the configuration is a
chessboard on a subset of R̄a, m obtained by removing some of the four
corners of R̄a, m and − 1

¯
outside. By a direct inspection it follows that
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starting from this configuration the possible second steps of our paths are
exactly those listed above: no new step enters into the game.

By iterating the above argument, it follows that a path wœ ¥ X(g) such
that Fwœ [ FwŒ can be obtained by using only single or multiple minus
corner persistences. The best path wœ is a sequence of a − 1 minus corner
persistences on one of the two sides of the rectangle long a: Fwœ=
H(g)+2bh(a − 1). By comparing FwŒ and Fwœ, and recalling that a < l, one
obtains U(g)=H(g)+2bh(a − 1). By Lemma 3.4 we obtain F(B̄(g))=
H(g)+2bh(a − 1) and U(B̄(g))={gœ}, where gœ is a configuration coinci-
dent with a chessboard in a rectangle Ra, m − 1 and with − 1

¯
outside. Finally,

by applying Lemma 3.5 we can estimate yS0B̄(g) ’ exp{2bh(a − 1)} and we
obtain that with high probability syS0B̄(g)

=gœ. By using the Markov prop-
erty and by iterating the argument above one completes the proof of part
(i) of Proposition 3.7. The proof of part (ii) is similar.

Case 2. Let us consider the trap g ¥ S−1
¯

such that gL0 R̄a, m
=−1

¯L0 R̄a, m

and gR̄a, m
=Ce

R̄a, m
. The proof is the same as in the Case 1.

Case 3. Let us consider the trap g ¥ S−1
¯

such that gL0 R̄a, m
=−1

¯L0 R̄a, m

and gR̄a, m
=+1

¯ R̄a, m
. Again we suppose a < l. As before we start by listing

the transitions that can be first steps for a path in X(g):

1. a minus spin adjacent to one of the four sides of the rectangle is
flipped. A configuration g1 ¥ S0B(g) is reached and H(g, g1) − H(g)=
2b(2 − h)=: F1. We notice that the unique downhill path starting from g1

ends in a trap gŒ as in Fig. 6.
2. A minus spin at distance greater or equal to two from any site

of the rectangle is flipped. A configuration g2 ¥ B(g) is reached such that
H(g, g2) − H(g)=2b(4 − h) > F1: this kind of steps can be neglected.

3. One of the four corners of the rectangle is flipped (a corner is a
plus spin with two minuses among its nearest neighbors). A configuration
g3 ¥ B(g) is reached such that H(g, g3) − H(g)=2bh.

4. One of the non-corner plus spin on one of the sides of the rec-
tangle is flipped. A configuration g4 ¥ B(g) is reached such that
H(g, g4) − H(g)=2b(2+h) > F1: this kind of steps can be neglected.

Fig. 6. Growth of a plus droplet inside the sea of minuses: appearing of a protuberance.
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5. One plus spin in the interior of the rectangle is flipped. A configu-
ration g5 ¥ B(eta) is reached such that H(g, g5) − H(g)=2b(4+h) > F1:
this kind of steps can be neglected.

6. Two or more spins are flipped simultaneously: the energy cost is
smaller than F1 only in the case of a simultaneous flip of k corners. All the
others many–spin flips can be neglected.

From the list above it follows that there exists a path wŒ={g, g1} ¥ X(g)
consisting of a single step of the first type; so FwŒ=H(g)+F1=H(g)
+2b(2 − h). The only paths w ¥ X(g) that can compete with wŒ are those
whose first step is a single or a multiple corner erosion. Suppose that after
the first step of our uphill path the configuration of the system is g3. Two
more possible transitions must be taken into account in the analysis of the
possible second steps.

7. One corner spin is flipped. A configuration g7 ¥ B(g) is reached
such that H(g3, g7) − H(g3)=4bh. Indeed we have to take into account
that the minus spin with two pluses among its nearest neighbors (the minus
at the site flipped at the first step) must persist.

8. The minus spin with two pluses among its nearest neighbors and
one of its two adjacent plus spins are simultaneously flipped. A configura-
tion g8 ¥ B(g) is reached such that H(g3, g8) − H(g3)=2bh.

From the third step on no more possible transitions arise, excepted the
obvious generalization of 8:

9. A corner plus spin at site x is flipped together with all the spins at
sites y ] x such that py(gy(y) | g) Q 1 in the limit b Q ., where g denotes
the actual configuration. The energy cost of this transition is 2bh.

We conclude that an estimate of U(g) smaller then FwŒ=H(g)+2b(2 − h)
can be obtained only by using an uphill path made of steps of types 3, 7, 8,
and 9, or steps in which two or more transitions 3, 7, 8, 9 are performed
simultaneously. Consider a path obtained by using these transitions: until
on each side of the rectangle there are two nearest neighboring pluses the
configuration is still in B(g). Hence, to exit B(g) at least on one of the four

Fig. 7. Shrinking of a droplet of pluses inside the sea of minuses.
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sides of the rectangle there must be no pair of nearest neighboring plus
spins. It is clear that the path wœ made of steps 3, 7, 8, and 9, exiting B(g)
and with minimal height along the path is the one described in Fig. 7: after
a first step of type 3 and a second step of type 8, l − 3 steps of type 9
are performed until the stable pair gœ is reached. The height along this
path is Fwœ=H(g)+2bh(a − 1). By comparing FwŒ and Fwœ and recalling
that a < l, one obtains U(g)=Fwœ=H(g)+2bh(a − 1); by Lemma 3.4
we obtain F(B̄(g))=H(g)+2bh(a − 1) and U(B̄(g))={gœ}. Finally, by
applying Lemma 3.5 we can estimate yS0B̄(g) ’ exp{2bh(a − 1)} and we
obtain that with high probability syS0B(g)

=gœ. By using the Markov prop-
erty and the results proven in the Case 1 one completes the proof of part (i)
of Proposition 3.7. The proof of part (ii) is similar. L

Propositions 3.8 and 3.10 can be proven via arguments similar to those
used in the proof of Proposition 3.7. Proposition 3.9 is a byproduct of the
proves of Propositions 3.7 and 3.8.
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